Petal Webs with 5 x 5 anti-aliasing
This fractal is one I found while exploring variations of the parallel resistor formula with 3 terms. The formula in this case mixes cosh, sinh, and z: z=1/(1/((cosh(z)-1)+pixel+1) + 1/(z*sinh(z)+pixel-1) + 1/(z*z+pixel)) The equation was constructed so that the minimum power of z representing the series for each term is 2. Thats the reason for the -1 after the cosh and the extra z* in front of the sinh. I haven't made any conclusions about whether or not 3 terms is better than 2 terms but it certainly is different. I liked how the inside stuff in the image was filled with the "webs". Even the arms of the webs have little webs along the sides. |
The parameter file for the fractal is: petal_webs { ; Exported from Fracton.
reset=2004 type=formula formulafile=fracton.frm
formulaname=F_20150208_1101 passes=1 float=y
center-mag=-6.997039369982983/0/2222.22225/1/0/0
params=0/0/0/0/-1/0/1/0/0/0 maxiter=10000
inside=0 logmap=10 periodicity=6
colors=000APIAPIAPIAPIAPIARLARLARLARLBTOBTOBTOBTOB\
TOBVRBVRBVRBVRBXUBXUBXUBXUBXUBZXBZXBZXBZXB`_B`_B`_\
B`_CabCabCabCabCabCceCceCceCceCehCehCehCehCehCgkCg\
kCgkCgkCinCinCinCinCinCkqCkqCkqCkqDlsDlsDlsDlsAKAA\
KAAKAAKAAKAAKAAKAAKADMDDMDDMDDMDDMDDMDDMDDMDFPGFPG\
FPGFPGFPGFPGFPGFPGIRJIRJIRJIRJIRJIRJIRJIRJLTMLTMLT\
MLTMLTMLTMLTMLTMNWPNWPNWPNWPNWPNWPNWPNWPQYSQYSQYSQ\
YSQYSQYSQYSQYST`VT`VT`VT`VT`VT`VT`VT`VWbYWbYWbYWbY\
WbYWbYWbYWbYYe`Ye`Ye`Ye`Ye`Ye`Ye`Ye``gc`gc`gc`gc`g\
c`gc`gc`gccjfcjfcjfcjfcjfcjfcjfcjfelielielielielie\
lielieliholholholholholholholholkqokqokqokqokqokqo\
kqokqomsqmsqmsqmsqmsqmsqmsqmsqkqokqokqokqokqokqokq\
okqoholholholholholholholholelielielielielielielie\
licjfcjfcjfcjfcjfcjfcjfcjf`gc`gc`gc`gc`gc`gc`gc`gc\
Ye`Ye`Ye`Ye`Ye`Ye`Ye`Ye`WbYWbYWbYWbYWbYWbYWbYWbYT`\
VT`VT`VT`VT`VT`VT`VT`V000 }
frm:F_20150208_1101 {
; Similar to the parallel resistance formula
z=0,c1=pixel-p3,c2=pixel-p4:
z=1/(1/((cosh(z)-1)+c1)+1/(z*sinh(z)+c2)+1/(z*z+pixel)),
|z|<100
}
|