Petal Webs with 5 x 5 anti-aliasing
This fractal is one I found while exploring variations of the parallel resistor formula with 3 terms. The formula in this case mixes cosh, sinh, and z: z=1/(1/((cosh(z)-1)+pixel+1) + 1/(z*sinh(z)+pixel-1) + 1/(z*z+pixel)) The equation was constructed so that the minimum power of z representing the series for each term is 2. Thats the reason for the -1 after the cosh and the extra z* in front of the sinh. I haven't made any conclusions about whether or not 3 terms is better than 2 terms but it certainly is different. I liked how the inside stuff in the image was filled with the "webs". Even the arms of the webs have little webs along the sides. |
The parameter file for the fractal is: petal_webs { ; Exported from Fracton. reset=2004 type=formula formulafile=fracton.frm formulaname=F_20150208_1101 passes=1 float=y center-mag=-6.997039369982983/0/2222.22225/1/0/0 params=0/0/0/0/-1/0/1/0/0/0 maxiter=10000 inside=0 logmap=10 periodicity=6 colors=000APIAPIAPIAPIAPIARLARLARLARLBTOBTOBTOBTOB\ TOBVRBVRBVRBVRBXUBXUBXUBXUBXUBZXBZXBZXBZXB`_B`_B`_\ B`_CabCabCabCabCabCceCceCceCceCehCehCehCehCehCgkCg\ kCgkCgkCinCinCinCinCinCkqCkqCkqCkqDlsDlsDlsDlsAKAA\ KAAKAAKAAKAAKAAKAAKADMDDMDDMDDMDDMDDMDDMDDMDFPGFPG\ FPGFPGFPGFPGFPGFPGIRJIRJIRJIRJIRJIRJIRJIRJLTMLTMLT\ MLTMLTMLTMLTMLTMNWPNWPNWPNWPNWPNWPNWPNWPQYSQYSQYSQ\ YSQYSQYSQYSQYST`VT`VT`VT`VT`VT`VT`VT`VWbYWbYWbYWbY\ WbYWbYWbYWbYYe`Ye`Ye`Ye`Ye`Ye`Ye`Ye``gc`gc`gc`gc`g\ c`gc`gc`gccjfcjfcjfcjfcjfcjfcjfcjfelielielielielie\ lielieliholholholholholholholholkqokqokqokqokqokqo\ kqokqomsqmsqmsqmsqmsqmsqmsqmsqkqokqokqokqokqokqokq\ okqoholholholholholholholholelielielielielielielie\ licjfcjfcjfcjfcjfcjfcjfcjf`gc`gc`gc`gc`gc`gc`gc`gc\ Ye`Ye`Ye`Ye`Ye`Ye`Ye`Ye`WbYWbYWbYWbYWbYWbYWbYWbYT`\ VT`VT`VT`VT`VT`VT`VT`V000 } frm:F_20150208_1101 { ; Similar to the parallel resistance formula z=0,c1=pixel-p3,c2=pixel-p4: z=1/(1/((cosh(z)-1)+c1)+1/(z*sinh(z)+c2)+1/(z*z+pixel)), |z|<100 } |